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1.1 Random Walk & Efficient Markets 

According to the Random Walk model, stock price returns (the changes in price over a 

given time period, such as from one closing price to the next) are supposed to be independent, 

uncorrelated random variables.  (More precisely, it is the logarithmic price returns that are 

usually considered.  These are postulated to be Gaussian random variables.)  Then the 

logarithmic prices, which are the sum of these independent price returns, follow a stochastic 

process called the Random Walk.  The main consequence of the Random Walk hypothesis is 

that future returns are independent (and hence uncorrelated) with the past prices (or any other 

financial data, such as fundamental data).  So, theoretically no function of past data can be used 

to predict future price returns.  This is a statement of the Efficient Market Hypothesis, of which 

the Random Walk model is a special case. 

If the market were perfectly efficient, then there would be no point to short-term trading.  

On the average, the expected return from short-term trading would be zero, relative to a buy-

and-hold strategy.  If the Random Walk process is one with drift, corresponding to the secular 

upward trend of the stock market, then the buy-and-hold strategy would give an overall average 

return over a long holding period equal to the secular trend.  This is presumably a reward for the 

risk inherent in stock investing, which is measured by the variance or standard deviation of the 

Random Walk over time.  But short-term trading would only increase the risk, with no 

corresponding increase in expected returns over time.  Thus it would be just like gambling, 

except that the expected return (over buy-and-hold) would be zero (rather than a loss, as with 

most gambling). 

However, hardly anybody believes that the market is truly efficient.  There are many 

people interested in short-term trading, and many others who are prudent to buy and sell 

securities over longer term holding periods, as the situation changes and different securities look 

more promising (based on past information).  A simple, rough argument indicates that the market 

can never be truly efficient.  If the market were perfectly efficient, then there would be no reward 

for short-term trading (or longer-term trading either), so people would stop trading.  But it is 

precisely the trading activities, on all time scales, that keep the market efficient.  Hence when the 

trading stops, inefficiencies would immediately be created, which would induce people to start 

trading again because they would then be able to make a profit.  So the conclusion is that people 

trade to the extent that they can still make a profit, so the efficiency of the market is dictated by 
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the ability of the best traders to still be able to make a profit (at the expense of the less 

knowledgeable traders).  So we expect inefficiencies to exist at a level that the most sophisticated 

traders are just able to find and take advantage of them (in a best case scenario).  At the present 

time, the market is almost efficient, but it can never be perfectly efficient.  Profitable trading 

opportunities will always exist for the most sophisticated traders. 

1.2 Stochastic Noise & Random Shocks 

The Random Walk model may be thought of as a model in which each price movement 

is an independent random shock.  Such a random shock is presumably the result of some 

business development or news input regarding the security, at least for the larger shocks.  

However, probably a more realistic model of stock price behavior is that it is due to random 

shocks occurring at infrequent intervals, and in between the shocks the price action is due to 

investor reaction to these shocks.  This investor reaction is not instantaneous, in the real world, 

so the market is not perfectly efficient.  The investors react to the shocks and the present state of 

the market with some finite time delay, which is of the order of the investment horizon of that 

investor.  Also, many investors do not know how to properly interpret the present condition of 

the market, so they over-react and cause prices to swing above or below their “fair value”.  This 

combination of inefficiencies should cause some sort of dynamical behavior of asset prices in 

response to the shocks due to external influences, such as the state of the company itself or of the 

overall economy, or political events.  So, we have a set of shocks, with large shocks occurring at 

infrequent intervals, and smaller shocks occurring more frequently, according to some power 

spectrum, say, and a dynamical reaction to the shocks, which is delayed in time according to the 

spectrum of time horizons of all the investors.  So the result is a spectrum of unpredictable 

random shocks, and of predictable dynamical responses to those shocks.  It is these dynamical 

responses that Technical Analysis hopes to capitalize on by means of various indicators.  But 

the point is that, due to the finite response time of investors, the deterministic part of the price 

patterns are, to some extent, smooth and slowly varying.  At least, that is our hypothesis, 

assuming the use of end-of-day data.  There is additional correlation in intra-day tick data for 

time scales shorter than, say, 20 minutes, but we are only making use of end-of-day data here.  

For a partial theory of correlation in price tick data, see The Econometrics of Financial Markets 

(1997 ) by Campbell, Lo, & MacKinlay [CLM]. 
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Hence we may postulate a model for stock price action.  It consists of a deterministic 

part, which can be predicted (in principle, if not in practice), which is smooth and slowly 

varying, and hence consists of the lower-frequency Fourier components of the returns process.  

To this is added a random part, which may be modeled as stochastic white noise, with a 

constant spectrum.  Thus most of the high-frequency variation of prices is random, stochastic 

noise with very little predictive power.  (However, an exception to this is the apparent anti-

correlation of returns over time intervals of a few days.)  In order to uncover the predictable, 

deterministic part, it is necessary to employ smoothing to filter out the high-frequency 

components.  Otherwise, the small correlations in the low-frequency deterministic part are 

completely drowned out in the high-frequency noise and cannot be seen.  This is probably why it 

has been found so many times that the stock price data are statistically a Random Walk, and no 

clear deviations from the Random Walk can be seen by the classical statistical tests.  After 

smoothing the data, however, we do find some clear indications of usable correlations, although 

it should be emphasized that these are hardly ever very far above the level of the stochastic noise.   

1.3 Measuring Correlation in Data 

In order to find trading rules that work, we must find certain functions of the past price 

data (and/or perhaps other financial data such as fundamental data) that have a non-zero 

correlation with future returns.  (See the Appendix for the definition of correlation.)  As we 

have stated, the Random Walk model states that this correlation should be zero.  We can 

construct various functions and measure their correlation with future returns, or more precisely, 

we can measure the sample correlation.  The sample correlation is an estimate of the actual 

correlation, based on a finite sample of data.  The true correlation can only be determined in a 

hypothetical stochastic system in which there is an infinite amount of data available, and the 

stochastic process is second-order stationary, meaning that the correlation is constant for the 

whole data set.  And here is a major problem regarding financial data:  There is almost never a 

very large data set to work with, and within this data set it is almost certain that the stochastic 

process is non-stationary.  So the measured correlation within one block of data will (probably) 

be different from that within other blocks of data in the same data set.  Furthermore, within a 

finite data set, the sample correlation is itself subject to a statistical uncertainty.  A totally 

random data set can yield a measured value of the sample correlation, which is non-zero, just 
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because of random statistical fluctuations.  The standard error for these fluctuations, for the usual 

Linear or Pearson’s R correlation, is given by 1 N , where N is the number of data points in the 

set.  (The standard error is slightly smaller for the robust correlation methods.)  So, for a set of 

returns 100 days long, the standard error of the sample correlation for these returns is 10%, 

which would be a very sizable correlation if it existed.  For a data set 1024 days long, which is 

the usual length of the data set that we work with, the standard error is 3.125%, which would be 

a small but non-negligible correlation if real.  Furthermore, there are indications that long-range 

correlations only extend to a maximum of 1024 data days, or four years [EP1, EP2].  So, the 

conclusion is that any correlations that exist in the data, are likely to be “down in the statistical 

noise” and of the same order of magnitude as the statistical uncertainty of the sample 

correlations.  Nevertheless, these small correlations, if real, can lead to very sizable returns from 

short-term trading. 

As an example, suppose we find a technical indicator that has a 5% correlation with the 

1-day future returns.  Suppose the daily volatility is 2% (r.m.s. value of daily returns).  Then, 

setting the daily trading position (trading rules) proportional to the technical indicator, the 

expected daily gain is the product of the correlation times the volatility, or 0.1%.  Assuming 256 

trading days per year, this leads to a simple annual gain from short-term trading of 25.6% and a 

compounded annual gain of 29.2% (over buy-and-hold), which most people would regard as 

excellent!  However, by most standards the 5% correlation, given a standard error of 3.125%, 

would not even be regarded as statistically significant.  The conclusion is that if we want to find 

trading rules that work, we have to search for correlations that are barely above the statistical 

“noise” level, and as a result we must also accept that the standard deviation of the gains (from 

short-term trading) will inevitably be of the same order of magnitude as the gains themselves.  

Nevertheless, if the short-term trading is done within the setting of an overall portfolio strategy, 

the standard deviation for short-term trading for the whole portfolio can be reduced while the 

returns remain the same.  In this case the standard deviation of the returns will be reduced 

roughly by a factor 1 N , where now N is the number of securities in the portfolio.  Of course, 

to get this 1 N  reduction in the standard deviation, it is necessary to do N times as much work! 

Regarding the statistical significance of the correlation, the usual interpretation is that a 

correlation greater than two standard errors (from zero) is regarded as significant.  A correlation 
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this large, at least 6.25% in the example above, is achieved only 4.6% of the time by pure chance 

alone.  (This corresponds to a 4.6% significance level.)  So, we say that this correlation is 

significant at the 95.4% confidence level, because there is a 95.4% chance that this correlation is 

not due to chance alone.  (We are calling the confidence level that quantity which is 100% minus 

the significance level.)  Theoretically, when estimating the “true” correlation by means of the 

sample correlation, the measured sample correlation will itself be a random variable with a 

Gaussian distribution of values.  The standard error of this distribution is 1 N  as stated above, 

for a sample size N.  Thus, if there is no actual correlation at all, then the measured values of the 

correlation will be distributed around zero, with a standard error 1 N .  These values will lie 

within one standard error of zero 68.3% of the time, within two standard errors of zero 95.4% of 

the time, and within three standard errors of zero 99.7% of the time [SN].  So, if the measured 

correlation is not at least two standard errors away from zero, it is usually regarded as not 

statistically significant.  However, this does not mean that if the measured correlation is within 

two standard errors of zero, then it is necessarily not a real correlation.  All it means is that the 

measured correlation is consistent with zero correlation (to the 4.6% significance level).  Most of 

the correlation we measure, at the “peaks” in the Correlation Test display in QuanTek, are 

actually more than two standard errors away from zero, so they can be regarded as significant.  

However, we prefer the following interpretation, which seems more reasonable:  The measured 

correlation represents the mean or expected value of the actual correlation, and this value is 

uncertain by an amount given by the standard error, 1 N .  In this way we are not forced to 

ignore measured correlations that are within two standard errors of zero, and then “define” them 

to be zero.  We regard the measured correlations to be the most likely value of the actual 

correlations, subject to a rather wide uncertainty given by 1 N .  If Edgar Peters (1991, 1994) 

[EP1, EP2] is correct and the correlations do not persist longer than 1024 days or so, then we 

cannot reduce this statistical uncertainty any lower than about 3% by taking a larger data set, so 

there is never any way to conclusively separate the correlations we are seeking from the 

stochastic uncertainty of the sample correlation measurement.  Nevertheless, these correlations, 

provided they are really there (which they seem to be), can still be used (we hope) to construct 

profitable (over the long term) short-term trading rules.  
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The ultimate point is that there is no “Law of Large Numbers”, or mathematical limit as 

N  , that we can take in order to prove conclusively the existence of correlation, or measure 

the sample correlation to arbitrarily high confidence levels.  This limit might be approximated by 

finding some trading rule, and testing it on a whole portfolio of stocks over a long period of time, 

say 2048 days.  In this way, we may finally be able to find an unambiguous signal for a highly 

statistically significant correlation, and the portfolio ensemble then plays the role of the very 

large statistical ensemble.  But such a calculation might take hours or days to perform, and I 

have not yet attempted such long calculations.  In the meantime, it is still necessary to apply a 

certain amount of intuition in deciding which correlations are meaningful and which are just 

stochastic noise.  (Having said this, I should add that the QuanTek program yields some rather 

clear signals for correlations between certain technical indicators and future returns, which 

certainly do not look like stochastic noise.  But there is no statistical test that can prove 

conclusively that they are real correlations.  Without an infinite data set, or at least a very large 

one, it is impossible to prove anything conclusively from Statistics.) 

1.4 Definition of Technical Indicators 

The usual definition of a technical indicator is some function of the past price data, 

which “signals” a buy or sell point.  As a prototype, one of the most commonly used technical 

indicators is a combination of two (exponential, say) moving averages, one with a longer time 

scale than the other.  When the shorter MA crosses the longer MA moving upward, this is a buy 

signal, and when the shorter MA crosses the longer MA moving downward, this is a sell signal.  

The expectation is that as long as the shorter MA is above the longer MA, the prices will be in an 

up-trend, and as long as the shorter MA is below the longer MA, the prices will be in a down-

trend [Pr].  (Evidently there is an assumption here that the prices will be in one of two modes, 

either bull or bear market, and that these modes will last much longer than the time scale of the 

moving averages themselves.)  Equivalently, we can form an oscillator from the two MA’s, by 

subtracting the longer one from the shorter one (assuming logarithmic price data).  This is a 

logarithmic version of an oscillator called the Moving Average Convergence-Divergence 

(MACD), in which the ratio of two exponential MA’s of the price data is taken [Pr].  Then the 

buy/sell points are marked by the points at which this (logarithmic) MACD crosses the zero line, 

moving up or down respectively. 
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I would now like to make a slight generalization of the concept of technical indicator, and 

regard a technical indicator as any function of the past prices (and possibly other data), which is 

supposed to be correlated with future returns.  So, for example, the implication is that the 

oscillator formed from two moving averages will be above zero when the (intermediate or long-

term) future returns are positive, and below zero when they are negative.  In other words, there is 

expected to be a positive correlation between this oscillator and the future returns over some 

time interval N.  It is possible to form a whole variety of technical indicators of this sort, and 

measure their correlation with N-day future returns to determine their effectiveness.  Then, either 

a linear trading rule can be used in which the position in the security is adjusted to linearly 

follow the value of the indicator, or a non-linear trading rule can be used in which the position is 

long by a fixed amount when the indicator is positive and short by a fixed amount when the 

indicator is negative.  (This latter trading rule, of course, requires far fewer trades.)  Likewise, 

the indicator itself can be a linear function of the past returns, such as MA’s or sums and 

differences of MA’s, or it can be a non-linear function of past data, such as polynomials or the 

hyperbolic tangent function or the error function.  By using non-linear functions of the data and 

measuring their linear correlation with future returns, we are actually capturing some of the 

higher-order statistics of the data, which is probably important for financial data.  However, for 

the time being we will confine the discussion to various linear combinations of various types of 

smoothings of the past data.  However, our method can be extended to non-linear functions of 

the past data simply by defining and using such functions instead of linear ones.  Evidently, some 

of the traditional technical indicators themselves may be regarded as very complicated non-linear 

functions of the past price data.  Examples of this would be support/resistance levels, head and 

shoulders tops and bottoms, triangles, rectangles, flags, and so forth, and even trend lines for bull 

and bear trends [E&M].   

I would like to remark here that, in my opinion, most of the traditional rules of Technical 

Analysis are probably obsolete.  They probably worked well in decades past, when there were 

far fewer players in the market and the rate of information exchange was much slower and the 

amount of information available much less.  The markets are undoubtedly much more efficient 

now than they were when these traditional rules were first formulated [E&M].  In particular, the 

ability to signal a long-term trend change by the crossing of two MA’s of much shorter time 

scale seems “too good to be true”, as do the other methods of signaling a trend change by means 
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of technical patterns of short time duration.  Probably in today’s market the predictive power of 

any technical indicator formed from price data over a certain time scale is only valid for times of 

the order of that time scale.  

Methods of Smoothing Data 

One type of smoothing used in QuanTek is called the Savitzky-Golay smoothing filter.  

This is a state-of-the-art digital smoothing filter, which has the property that it preserves the first 

and second moments of the price data.  (In other words, if there are peaks in the data, the 

smoothing preserves the positions of the peaks and also their widths.)  This filter uses Fourier 

methods to compute the smoothing. The Savitzky-Golay smoothing filter comes in two 

variants, the acausal and causal filters.  The acausal filter smooths over a time window 

consisting of a number of days in the past and future around the given day, equal to the 

smoothing time period.  This acausal filter has the advantage that it preserves the phase 

relationships of the various Fourier components (zero-phase filter).  The causal smoothing filter 

smooths over a time window equal to two smoothing periods in the past.  (This is similar to the 

usual moving average.) Hence there is an inherent time delay of (approximately) one smoothing 

period with the causal filter.  This causal filter will not preserve phase relationships, which is a 

disadvantage.   

The other type of smoothing used in QuanTek is Wavelet smoothing. This consists of 

taking a Multi-Resolution Analysis (MRA) wavelet transform of the data using the Wavelet 

routines. This is an alternative to the Fourier routines used in the SG filter, and is necessarily 

acausal. The Wavelet method of smoothing is used to construct technical indicators or 

regressors that are used in the Adaptive filter for the Price Projection. Actually, the Wavelet 

smoothing and the Savitzky-Golay smoothing are very similar and differ only in details. The 

Wavelet routines are useful in designing an Adaptive filter for other reasons, namely that they 

provide an approximate diagonalization of the covariance matrix. In either case, the smoothing 

has the effect of bringing out the “signal” in the technical indicators due to noise reduction 

from the filtering, and increasing the correlation between the technical indicators and future 

returns. 

In addition to smoothing, the smoothing filters described above can also be used for 

prediction. The two procedures of smoothing and prediction are closely related. In order to use 
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the filter for prediction, the filter must clearly be causal (so that it makes a future prediction 

based only on past data). After de-trending the data, the smoothing filter is applied to produce a 

smoothed value for future dates relative to the past data set, using the smoothing of the past data. 

However, using a smoothing filter for prediction makes an implicit assumption about the 

correlation structure of the data, which must be of a very simple type. More sophisticated 

Linear Prediction filters are normally used, which incorporate some means to estimate the 

correlation in the data in order to make the future prediction (see below). 

A third type of smoothing is the ordinary exponential Moving Average (MA).  This type 

of smoothing filter is causal, in that it does not make use of any data in the future relative to the 

given day.  As is well known, the exponential MA also introduces a time delay of the order of 

one smoothing period (for a time scale of smoothing of two time periods).  The exponential MA 

could itself be used to make a future prediction, because technically it is a smoothing filter just 

like the Savitzky-Golay or Wavelet smoothing filters.  In fact, the exponential MA is actually 

the optimal Linear Prediction filter for the MA(1) process (Moving Average process with an 

autocorrelation sequence 1 time unit in length) [AH, p.22]. 

Categories of Smoothed Indicators 

There appear to be two basic categories of technical indicators, corresponding to two 

basic categories of correlation.  The most basic correlation is what is known as return to the 

mean.  This implies that there is some mean or “correct” price, which the security returns to if 

the security becomes mis-priced.  So, if the price is below some average level, it can be expected 

to move higher, and if it is above the average level, it can be expected to move lower.  So the 

technical indicator consists of the current price relative to some longer-term average or smoothed 

price.  The future returns are then expected to be anti-correlated with this indicator some number 

of days in the past (or correlated with the negative of the indicator).  Since the security becomes 

mis-priced in the first place after some up- or down- move, the presence of a return to the mean 

mechanism also shows up in the anti-correlation of past returns with future returns.  There is a 

rather pronounced anti-correlation in daily returns (for some securities) up to about three days 

in the past, with the future one-day returns, and this can be explained by the return to the mean 

mechanism acting over these very short time intervals.  It also appears to act over much longer 
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time intervals as well.  It should be noted that this mechanism is nothing other than the famous 

“Buy Low – Sell High” strategy. 

A second correlation is known as trend persistence.  This correlation corresponds to the 

tendency of the market to remain in either a bull or bear market.  In other words, if returns are 

positive or negative in the past, they are the same in the future, so that there is a positive 

correlation between past and future returns.  This mechanism would seem to be at variance with 

the return to the mean mechanism, which implies negative correlation.  However, these two 

mechanisms can be reconciled by supposing that the “mean” is some smooth, slowly varying 

function of past prices and economic data.  The trend, corresponding to a bull or bear market, is 

persistent and is related to the (usually) slowly varying rate of change of this price mean.  (Or it 

can be thought of as the mean value of the returns.)  Then, the shorter-term fluctuations about 

this mean price level are anti-persistent, and correspond to the return-to-the-mean mechanism.  

So, given any time scale, we may smooth the price data on this time scale, and then suppose that 

the smoothed long-term trend is persistent, and the short-term fluctuations about this trend are 

anti-persistent.  Evidently in an efficient market, these two mechanisms “cancel out” on all time 

scales, leading to zero correlation and neither persistence nor anti-persistence of returns.  But 

when inefficiencies exist, they do not cancel out, and correlation may exist on certain time 

scales.  Evidently the true situation is much more complicated than this, and what has just been 

said should be regarded as merely an oversimplified “sketch” of the true picture.  To our 

knowledge, nobody has yet formulated a complete theory of stock price correlations, although 

steps in this direction are outlined in The Econometrics of Financial Markets (1997) by Cambell, 

Lo, & MacKinlay [CLM]. 

A possible third correlation does not really have a name, but we will call it the presence 

of turning points or trend reversal mechanism.  According to this idea, if we can identify the 

turning points or changes of trend of the price data, then this will be correlated with a future 

positive or negative trend.  In other words, if we can identify a point where the trend seems to 

change from negative to positive, then this should be correlated with a future positive trend, and 

a point where the trend seems to change from positive to negative should be correlated with a 

future negative trend.  Examples of these change-of-trend indicators in traditional Technical 

Analysis are identification of top and bottom formations such as head-and-shoulders.  

However, we may also construct an oscillator-type indicator by taking the rate-of-change of the 
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returns, which is itself a rate-of-change of the log prices.  In other words, the returns are the first 

derivative (velocity) of the log prices, while the rate-of-change of returns is the second 

derivative (acceleration) of the log prices.  The hypothesis is then that this turning point 

indicator is correlated with future returns, at some point in the future.  However, this indicator 

may be less reliable than the first two, because it tends to emphasize the higher frequency modes, 

while most of the correlation seems to exist in the low frequency modes. 

Phase of Smoothed Indicators 

 When constructing the above described indicators using acausal smoothing, so the phase 

of the indicator coincides with the data (zero-phase filter), one would expect a definite phase 

relationship between the indicator and future returns. However, it is necessary now to discuss a 

subtle point. It is the distinction between deterministic and random signals. It is a mathematical 

theorem by Kolmogorov [B&D] that if a signal has a spectrum that is zero in any finite region 

(on a region of “non-zero measure”) then the signal must be deterministic. In particular, this will 

be the case if the spectrum is discrete. On the other hand, if the signal has a continuous spectrum 

that is greater than zero on all but a “set of measure zero” (i.e., a set of discrete points) then the 

signal must be random. What does this have to do with stock trading? In both the SG smoothing 

and the Wavelet smoothing, the signal is treated as a “circular” set of discrete data of length, 

say, 2048. These smoothing routines then separate the signal into a discrete set of frequencies. If 

this is actually possible for the real spectrum, then the signal is necessarily deterministic. This 

means that it has to be perfectly predictable. We know this is not the case, of course, with real 

returns data. If it were perfectly predictable, then we could just separate out one particular 

frequency, trade in phase with the smoothed indicator of that one frequency, and make a killing! 

The other frequencies would cancel out, and the trading cycle with the one frequency we select 

would lead to huge gains! 

 Why is this not possible? The Random Walk model says that the returns data are 

completely random and have no predictive power. When we separate the returns data into 

discrete frequencies, evidently this is only an approximation, as random data must have a 

continuous spectrum. So the spectrum actually consists of a continuum of frequencies, with 

amplitudes and phases that vary, either continuously or discontinuously. In either case, evidently 

the phase of the discrete frequency components of the SG or Wavelet transform is what varies 
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randomly. In that case, trading using this single frequency component with a random phase, 

cannot lead to any gains, consistent with the Random Walk model. 

 Are the signals deterministic or random? The Random Walk model says they are 

random, but it could be that there is also a deterministic component superposed, at least for short 

periods of time and certain frequencies. Then the buy/sell points determined by the SG or 

Wavelet transform of the returns and resulting technical indicators might have some predictive 

power, if you happen to choose the correct trading time scale at the correct time. At any rate, 

these buy/sell signals should not be any worse than random timing, provided the main criterion 

for trading is the expected future return or portfolio rebalancing. At worst, the buy/sell signals 

are not predictive and any buy/sell points are as good as any other, as long as the decision to buy 

or sell is made according to some other criterion. But in some cases, as Technical Analysts 

believe, it might be possible to achieve gains by “timing” the market. If the buy/sell signals are 

used as timing points to rebalance the portfolio, as opposed to, say, doing it every month, then 

this should do no harm and might do some good. 

1.5 The Harmonic Oscillator Indicator 

There are three main types of technical indicators used in QuanTek.  These correspond 

to the three main types of correlation mentioned above, namely return to the mean and trend 

persistence, plus turning point or trend reversal.  These three types of indicators are 

implemented by means of the Savitzky-Golay or Wavelet smoothing filter, using the filter 

directly on the (logarithmic) price data to obtain the Relative Price indicator, taking the first 

derivative to obtain the Velocity indicator, or taking the second derivative to obtain the 

Acceleration indicator. These indicators are also projected ahead in time using a Standard 

Linear Prediction (LP) filter. They are incorporated in the Harmonic Oscillator indicators 

displayed in a splitter window, and are used mainly to identify possible buy/sell points. The 

Wavelet smoothing, on the other hand, is also used to construct these indicators to be used as 

regressors in the Adaptive filter, which are constructed using circular boundary conditions. 

In the description of the indicators given below, the phase relationships between the 

Relative Price, Velocity, and Acceleration indicators with respect to the returns are given in a 

theoretical way.  These descriptions would be accurate if the returns followed a pure sine wave 

of a single frequency, and the time horizon and smoothing time scale were set according to this 
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frequency (the period of the wave equal to 2N days).  These are the phase relationships assumed 

in computing the buy/sell points from the Harmonic Oscillator indicators.  However, when the 

correlation of these three indicators with the future returns is computed, it is found that these 

phase relationships often do not hold exactly.  The indicators have a different phase relationship 

to the N-day future returns than they theoretically should.  The origin of this phase discrepancy 

no doubt has to do with the fact that the spectrum of the security returns consists of a continuous 

spectrum of waves of all different frequencies, not just of one frequency, and the amplitude-

phase relationships between these different waves can be complex and rapidly varying. (In fact, 

the randomness of the data can be re-interpreted in these terms. If these amplitude-phase 

relationships are stable for a period of time, then this represents correlation in the data.) To 

take this into account in the Adaptive filter, an adaptive fit is made to the Relative Price and 

Velocity indicators, and perhaps also the Acceleration indicator, which are 90 degrees out of 

phase with each other (theoretically). Time-varying sums of these indicators in the fit can thus 

take into account the (time-varying) phase relationships between the indicators and future 

returns, and if the relationships are persistent, then this should lead to predictive power. 

Relative Price Indicator 

The first type of indicator that might be used to form a technical indicator is called the 

Relative Price.  This is a difference of the (logarithmic) price levels with smoothings on two 

different time scales, the shorter time scale minus the longer time scale.  This is similar to the 

MACD oscillator consisting of the difference of two exponential MAs mentioned previously 

(except without the time lag).  This type of indicator is a measure of the return to the mean 

mechanism, with the longer time period smoothed price level playing the role of the mean level.  

When the shorter time period smoothed price level is below the longer period one, the future 

prices are expected to rise, and when it is above, the future prices are expected to fall.  There is a 

certain time delay here, which is of the order of the shorter smoothing time period, in which the 

trough or peak of this indicator now implies that the future returns will be positive or negative 

later, roughly by this time delay, which corresponds to one time period of 2N  days, with N 

being the shorter smoothing time scale.  So there is a phase difference between the Relative 

Price indicator and the future returns that it is supposed to predict.  The negative of this indicator 

leads the expected future returns by approximately one time period of 2N  days (or 90 degrees), 
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so if the trading time scale is N days, this indicator will be correlated with the future N-day 

returns. 

Due to this phase relationship, we expect the buy points to pass through the minima 

[min] of the Relative Price indicator, and the sell points to pass through the maxima [max] of 

this indicator, for an N-day time horizon.  This is, of course, nothing other than the Buy Low – 

Sell High mechanism at work.  In QuanTek, a Relative Price indicator is displayed as part of 

the Harmonic Oscillator indicator in a splitter window.  The buy/sell points that are displayed 

as vertical green/red lines are defined by the minima/ maxima of the Relative Price indicator 

(along with the rest of the Harmonic Oscillator). Note that, unlike the exponential moving 

average, the Savitzky-Golay or Wavelet smoothing filter used in this indicator is acausal and 

has no time lag. The downside of this is that it requires a future Price Projection, for which we 

use the Standard LP filter, and the smoothing mixes some of the future projection with the past 

data (so it is not causal). 

Velocity Indicator 

The second type of indicator that might be used to form a technical indicator is called 

the Velocity.  It is the smoothed first derivative of the log prices. This indicator is a measure of 

trend persistence.  It is clear that if the trend is persistent, then the smoothed Velocity of the log 

prices should be correlated with the future returns.  So the Velocity indicator is in phase with 

the future returns.   

The buy points will thus correspond to the points where the returns start to become 

positive, in other words the zero-crossing points from negative to positive [Z+].  Likewise, the 

sell points will correspond to the points where the returns start to become negative, which are 

the zero-crossing points from positive to negative [Z–].  Since the negative of the Relative Price 

indicator leads the returns, the trough of the Relative Price [min] corresponds to the positive 

zero-crossing point [Z+] of the Velocity indicator, which is a buy point.  Likewise, the peak of 

the Relative Price [max] corresponds to the negative zero-crossing point [Z–] of the Velocity 

indicator, which is a sell point.  So the green/red vertical lines denoting buy/sell points pass 

through these points of the Relative Price and Velocity indicators.  The Velocity indicator, since 

it is supposed to be correlated with present returns, should be in phase with the N-day returns.  

Hence the Velocity indicator will lag by approximately one time period ( 2N  days, or 90 
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degrees) the start of the future N-day returns. In other words, the Velocity indicator will reach 

a peak in the middle of the N-day period of positive returns. 

Acceleration Indicator 

We may also construct a third type of smoothing that might be used to form a technical 

indicator, which is called the Acceleration.  It is the smoothed second derivative of the log 

prices.  This indicator may be interpreted as an indicator of turning points, because the second 

derivative is positive when the prices are at a minimum (positive or upward curvature) and is 

negative when they are at a maximum (negative or downward curvature).  Hence it can be seen 

that this Acceleration indicator will be positive when the Relative Price is negative, and vice-

versa.  Thus the Acceleration indicator is exactly out of phase with the Relative Price.  

However, the Acceleration differs from the Relative Price in that, with each successive 

derivative, the high frequency components are emphasized more and more.  Hence the 

Acceleration indicator contains much more of the high-frequency components than the Relative 

Price and hence is much less smooth.  The Acceleration, since it indicates a turning point, 

should lead the returns by approximately one time period ( 2N  days or 90 degrees).  A positive 

Acceleration peak, indicating a turning point from negative to positive returns, should be 

followed approximately 2N  days later by a positive peak in the Velocity, and likewise a 

negative Acceleration trough, indicating a turning point from positive to negative returns, should 

be followed approximately 2N  days later by a negative trough in the Velocity.  Hence the buy 

points will correspond to positive peaks [max] in the Acceleration, and the sell points will 

correspond to negative troughs [min].  So the Acceleration is 180 degrees out of phase with the 

Relative Price, and leads the Velocity by 90 degrees or one time period.  The green and red 

vertical lines denoting the buy/sell points indeed pass, approximately, through the peaks/troughs 

of the Acceleration indicator. The peak of the Acceleration indicator should hence occur 

approximately at the start of an N-day period of positive returns. 

1.6 Price Projections & Linear Prediction Filters 

 There are many different varieties of Linear Prediction (LP) Filters available for use. 

The simplest types presume that the data satisfy stationary statistics, meaning that the statistical 

properties of the data are assumed constant in time. This condition is satisfied in many different 
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systems, for example in studies of the 11-year sunspot cycle, but unfortunately not for financial 

data. So although these simple stationary LP filters may be used for Linear Prediction of 

financial data, the results will usually not be very good (although in some circumstances they do 

work well). Most of the time, the financial data satisfy non-stationary statistics. This means 

that the mean and covariance matrix of the returns changes with time. In order to track these 

non-stationary statistical properties, an Adaptive filter such as the Least-Mean Square (LMS) 

filter may be used. 

 Another problem with financial data is that the data are almost entirely noise. The 

problem is to ferret out any small correlation in the returns, which are then used to estimate the 

future returns. If the data really are white noise – with no correlation – then the Random Walk 

model holds and the future projection is just the average drift or mean of the returns. The usual 

methods of estimating the covariance matrix yield a fit to the noise rather than the actual 

correlation. The way to reduce the noise is to use smoothing to create smoothed indicators, and 

then measure the (time-varying) correlation between these indicators and the future returns. 

However, in order to understand these noise-reduction methods, it is helpful to first understand 

the basic LP filters based on stationary statistics and the usual definition of the covariance 

matrix. Thus we begin with the basic Yule-Walker equations for estimating the future return in 

terms of past returns. More generally, the Wiener-Hopf equations are used when an 

independent estimate of the covariance matrix is available. Note that these filters only make use 

of stationary second-order statistics, namely the mean and covariance of the returns, which 

are assumed stationary. A more general Adaptive Filter, utilizing technical indicators which 

can be arbitrary smoothed functions of the past data, can utilize higher-order statistics that are 

non-stationary. For example, one of the indicators could be the squared returns, or volatility 

(variance), and then the filter would utilize the covariance between this indictor and the future 

returns. This would then incorporate a type of GARCH (Generalized Auto-Regressive 

Conditional Heteroskedasticity) model. However, we begin with the most basic type of LP 

filter, utilizing only the covariance between the returns themselves. 

Covariance Matrix & Yule-Walker Equations 

Given a stationary stochastic process, the Linear Prediction filter is derived making 

use of the second-order correlation in the (logarithmic returns) data.  This correlation is 
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assumed constant in time, due to stationarity.  On a theoretical level, the time series is modeled 

as an auto-regressive time series which obeys the Yule-Walker equations.  To derive these 

equations, we need to pretend as if there is an infinite statistical ensemble of realizations of a 

given stochastic process, or in other words, the stochastic process specifies the statistical 

properties of the time series, and we can generate an unlimited number of actual time series with 

these statistical properties, starting with a different set of random numbers as input for each time 

series.  Then we can define, theoretically, an expectation value over this statistical ensemble of 

realizations of the stochastic process, as an average of some given quantity over the whole 

ensemble.  In practice, these expectation values may be approximated by various sums over the 

available data set, such as for example the sample mean and sample covariance. 

Now, using the notation of Haykin [Hay], suppose we are given a financial time series of 

returns of length N.  The N-by-1 observation vector is defined by [Hay]: 

 ( ) ( ), ( 1), , ( 1)
T

n u n u n u n N   u  

In this time series, the latest date is denoted by the index n, and the index increases moving 

forward in time. The observation vector is labeled by its latest date n. 

We first assume that the time series is stationary, so the covariance matrix of the returns 

is independent of time (hence independent of the index n). The (stationary) covariance matrix is 

then defined by the following expectation value with respect to the statistical ensemble: 

( ) ( )TE n n   R u u  

If the covariance matrix is stationary, then it depends only on the difference of the indices of the 

components of the two observation vectors. Correspondingly the autocovariance function or 

autocovariance sequence is defined as the expectation: 

 ( ) ( ) ( )r k E u n u n k   

Then in terms of the autocovariance sequence r(k), the covariance matrix is given by: 

(0) (1) ( 1)

(1) (0) ( 2)

( 1) ( 2) (0)

r r r N

r r r N

r N r N r

 
 


 
 
 

  

R  

Note again that due to stationarity, the coefficients r(k) of the autocovariance sequence or matrix 

depend only on the time lag between the two elements ( )u n  and ( )u n k  of the time series, not 
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on the index n of the series.  This is fortunate, for otherwise we would not be able to approximate 

these quantities by the corresponding sample expectation values.  The sample autocovariance 

sequence is then given by the following sum over the time series values, separated by the time 

lag k: 

1

0

1
ˆ( , ) ( ) ( )

N

n

r k N u n u n k
N





   

Of course, for a data set of length N, this sum runs out of the bounds of the data set.  So the 

above definition should be interpreted as applying to an infinitely long time series, from which 

we extract a sum over N terms.  For a data set of finite length, this definition can be modified 

appropriately. 

Now we suppose that the future value of the time series can be (partially) predicted as a 

linear sum over past values of the time series, plus a random white noise term.  (The Random 

Walk model corresponds to the white noise term alone.)  A stochastic model, in which the future 

value of a variable in a time series is determined as a linear function of M past values, plus 

additive white noise, is called an autoregressive process (AR) of order M.  This stochastic 

process satisfies the following difference equation [Hay]: 

1 2( ) ( ) ( 1) ( 2) ( )Mu n n w u n w u n w u n M         

The additive white noise ( )n  is assumed to be a Gaussian random variable of zero mean and 

constant variance, uncorrelated for different times: 

 
2

1 2

1 2

,
( ) ( )

0, otherwise

n n
E n n  

 
 


 

Here, 2

  is the noise variance. 

Next we take the expectation value of the autoregressive process with ( )u n k  on both 

sides of the equation.  Making use of the fact that the white noise term ( )n  is uncorrelated with 

anything with an index different from n, we arrive at the following result: 

     1( ), ( ) ( 1), ( ) ( ), ( )ME u n u n k w E u n u n k w E u n M u n k         

Using the definition of the autocovariance sequence, we may then rewrite this in terms of the 

autocovariance sequence itself: 

1 2( ) ( 1) ( 2) ( )Mr k w r k w r k w r k M        
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This may then be written in explicit matrix form as follows, noting that due to stationarity we 

have ( ) ( )r k r k  : 

1

2

(0) (1) ( 1) (1)

(1) (0) ( 2) (2)

( 1) ( 2) (0) ( )M

wr r r M r

wr r r M r

wr M r M r r M

     
    


    
    
    

       

 

This set of equations is called the Yule-Walker equations.  They may be expressed for 

simplicity in explicit matrix form.  Then, assuming the covariance matrix is nonsingular, it may 

be inverted and we may solve for the Linear Prediction (LP) coefficients as follows: 

1  Rw r w R r  

Hence the coefficients of the stationary autoregressive process may be obtained from the 

covariance matrix, provided that it is not singular, by a simple matrix inversion.  These are the 

basic equations for the Linear Prediction Filter.  In the case of the Yule-Walker equations, the 

stationary covariance matrix is estimated as a sum over products of past values of the time 

series, with a definite form. It should be noted from the above definition of the covariance matrix 

that the matrix is symmetric and all the elements on each (major) diagonal are equal.  This type 

of matrix is called a Toeplitz matrix.   

The matrix inversion process described above for the computation of the LP coefficients 

can be problematic, in general, for a large matrix.  But for a Toeplitz matrix there exist fast 

routines that can be used for their inversion numerically.  Thus, once the autocovariance 

sequence is estimated, and from it the covariance matrix is formed, the covariance matrix can be 

inverted using this routine to obtain the LP coefficients from the product of the inverted 

covariance matrix and the autocovariance sequence.  

Estimating the Covariance Matrix 

In the general case, we are faced with the problem of finding some estimate the 

covariance matrix. In order to estimate the (stationary) covariance matrix, there are at least three 

methods that can be utilized.  Probably the simplest method is to just compute the sample 

autocovariance using the formula given above.  More generally, the sample mean and 

covariance are given by the following formulas, for a data sequence 0 1NX X  , for a (finite) 

sample size of N.  These yield a non-negative definite covariance matrix [B&D]: 
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Note that the element ˆ(0)  of the covariance sequence given above is called the variance.  This 

is a measure of the total noise power in the time series.  In practice, even though the 

autocovariance sequence ˆ( )k  defined above is defined for all values of k such that 

0 1k N   , in practice only the first half of the values are used, because it can be seen that the 

second half of the values use an increasingly smaller number of the time series elements in their 

definition.  In fact, the last element of the covariance sequence is just the product of the first and 

last elements of the time series (minus the mean), according to the above formula.   

An alternative method for estimating the covariance matrix is by means of the 

spectrum.  The spectrum can be estimated either using the Fast Fourier Transform (FFT) or 

the Discrete Wavelet Transform (DWT).  (Also the Maximal Overlap Discrete Wavelet 

Transform (MODWT) can be used.) The FFT is a transformation in which the data set of daily 

returns, as a function of time, is decomposed into its component frequencies in an interval of 

fixed length, which we take to be 2048 days for the filter routines.  The output of the FFT 

routine, for a date length of 2048 days of returns, yields an amplitude for each frequency interval 

between 0 frequency and a frequency of 1 cycle per 2 days (Nyquist frequency), which is the 

maximum frequency possible for daily time series.  There are 1024 evenly spaced frequency 

intervals in this range for a data set of 2048 days.  The other half of the output consists of 1024 

values of the phase, which are not used.  The spectrum is then obtained by squaring the 

amplitude, which yields the spectral power at each frequency.  The FFT thus represents the time 

series as a sum of sine waves of constant amplitude over the 2048-day range.  The DWT, on the 

other hand, works a little differently.  In this case, the data set of 2048 days of returns data is 

decomposed in the wavelet basis, which is a set of waves, which are localized in both frequency 

and time, but of finite extent in both.  In this wavelet basis, the returns data are represented as 

amplitudes as a function of time, decomposed into a set of 8 frequency octaves.  These 

amplitudes are then squared to get the spectral power corresponding to each wavelet component. 

The point of computing the spectrum is to detect if there is any correlation present.  If 

there is no correlation, and the time series is just random white noise, then the true power 
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spectrum will be flat or constant.  However, the measured power spectrum, from the FFT or 

DWT, is not generally constant due to stochastic noise.  In fact, it is shown in standard textbooks 

on time series [B&D] that for the case of the FFT, the variance of each value of the power 

spectrum, for each discrete frequency, is 100%, or in other words, totally uncertain.  In order to 

uncover the true spectrum, therefore, the FFT spectrum must be smoothed, or averaged over a 

number of frequency values. This connection between a variation of the spectrum and the 

presence of correlation in the time series is made explicit by the Wiener-Khinchin Theorem, a 

nice (short) description of which given in Numerical Recipes [NR].  This theorem simply states 

that the power spectrum is the Fourier Transform of the autocovariance function, and vice-

versa.  Then since the covariance matrix is built from the autocovariance function as 

described earlier, by taking the Fourier Transform of the power spectrum, we arrive at the 

autocovariance function and hence the covariance matrix. However, it must be emphasized that 

these spectral methods of estimating the covariance matrix only work if the time series is 

stationary. 

For a non-stationary time series, we can break the time series up into segments of length 

N and approximate the covariance matrix in each segment as stationary. The length N of the 

segments must be chosen to be short enough so that the covariance matrix is approximately 

stationary in each segment, but not so short that the covariance matrix is dominated by stochastic 

noise. In the Least-Mean Square (LMS) adaptive filter described below, the covariance matrix 

is actually approximated by a segment consisting of a single term for each time step, so it is very 

noisy. But the noise cancels out in the adaptation of the filter over time. Alternatively, the 

covariance matrix could be approximated by a sum over a short segment of the data in this 

adaptive filter routine, to help reduce the stochastic noise. We also can reduce the stochastic 

noise by computing the covariance between various smoothed technical indicators and the M-

day returns, rather than the covariance between individual terms in the returns sequence as was 

done above. 

Wiener-Hopf Linear Prediction (LP) Filters 

 From the assumed auto-regressive model of the time series of returns as given by the 

Yule-Walker equations, we may develop a Linear Prediction filter to estimate future returns in 

the time series. Let us now change the notation somewhat, and let the index n denote the present 
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time, with the index increasing in the past and decreasing in the future. Hence for the case 0n 

, past indexes are denoted by positive values and future indexes by negative values. We now 

wish to form an estimate of the M-day future returns, at the date n, which we denote by ( )
ˆ M

ny , as a 

regression on the past returns. The LP coefficients are denoted by  0kw k  . The regression is 

performed over the past N days of returns. Thus we have the equation: 

1
( )

( )

0

ˆ
N

M n

n k n k

k

y w u






  

The task is to calculate the optimal LP coefficients ( )n

kw  at time n. To do this we must compare 

the M-day future projection with the “actual” future M-day returns. (Obviously this comparison 

is made over past data.) We denote the “desired response” or actual future M-day return with 

respect to (present) time n by ( )

M

nd : 

( )

1

M
M

n n m

m

d u 



  

Now we may define an estimation error: 

( ) ( ) ( )
ˆM M M

n n ne d y   

In the Wiener-Hopf theory, we choose to minimize the mean-square value of this error. Thus we 

minimize a cost function defined by [Hay, p.97]: 

2

( ) ( )

M M

n nJ E e 
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Thus the LP coefficients are adjusted so that the cost function is minimized, for each date n. This 

gives the optimal estimate of the future returns with respect to time n, in the least-square sense. 

 The optimal filter coefficients are found by varying the cost function with respect to the 

filter coefficients, and setting this variation to zero. The cost function may be expressed in terms 

of the above equations as: 
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Thus the variation with respect to the LP coefficients yields: 
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This may be rewritten in the following form: 
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
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
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These equations are an expression of the Principle of Orthogonality [Hay, p.99], which states 

that for the optimal Wiener-Hopf filter the estimation error is orthogonal (uncorrelated) to all 

the input samples, 
( ) 0M

n n jE e u 
    . 

 Let us now define some new notation. The covariance matrix of the past returns and the 

covariance between the past returns and future M-day returns at date n is given by: 

( ) ( )

, ( )
ˆn n M

k j n k n j j n n jE u u E d u  
          

In general, these expectation values may be estimated by a variety of methods as discussed in the 

previous section. They are not restricted to the particular form that was given for the Yule-

Walker equations. In general, the covariance matrix is always symmetric, assumed non-singular, 

but need not be Toeplitz as in the case of the Yule-Walker equations. 

Thus the above equation may be written in terms of these covariance matrices as: 

1
( ) ( ) ( )

,
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


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The hat is written over the future covariance matrix because, in general, it must be estimated or 

extrapolated from past data. Thus for the present time 0n  , and taking into account that the past 

covariance matrix is symmetric, we may rewrite this as: 
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Now we assume the covariance matrix is nonsingular, so it can be inverted (as should always be 

the case if the problem is well-posed). Doing this, we arrive at the Wiener-Hopf equations: 

1
(0) 1
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This represents the solution to the optimal filter, but note that the future covariance matrix ˆ
j  

must be estimated somehow, since the covariance between past and future returns is unknown at 

the present date 0n  . Normally this is extrapolated from its past values, using an algorithm 

such as an Adaptive filter. (If the time series is stationary, then it is equal to its past values.) 
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Least-Mean-Square (LMS) Adaptive Filters 

 If the time series data are non-stationary, then we need to estimate the LP filter 

coefficients recursively, starting at some past time and allowing the coefficients to “adapt” to the 

changing environment by means of the recursive procedure. Thus the Least Mean Square 

(LMS) filter involves a kind of “training” procedure over the history of the returns data. This is 

done by defining the cost function given above and then “adapting” the LP coefficients to move 

toward the minimum of the cost function recursively. This may also be viewed as a method of 

computing the covariance matrices given above. 

 The gradient of the cost function with respect to the LP coefficients, as given above, is: 
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In the Method of Steepest Descent [Hay, p.206], the LP coefficient vector ( )n

jw  is adjusted in 

successive steps, to try to reach a minimum of the cost function ( )

M

nJ . This is done by adjusting 

( )n

jw  in the downhill direction of ( )

M

nJ , which is the direction of the negative gradient of ( )

M

nJ . The 

instantaneous estimate of ( )

M

nJ  is used, rather than the expectation value as given above, so the 

expectation value symbol is dropped and we define the instantaneous estimate as: 
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Now, given that we have defined time to move forward in the negative direction, we define the 

recursion for each time step according to: 
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The parameter   determines the size of the step at each recursion, and has a crucial effect on the 

performance of the adaptive filter [Hay]. This is the basic recursion for the Least Mean Square 

(LMS) filter. It involves the instantaneous values for the covariance matrices defined previously, 

rather than the expressions in terms of expectation values [Hay, p.236]. Notice that the term in 

parentheses is just the estimation error at date n. The rate of adaptation of the LP coefficients is 

thus proportional to the estimation error. This rate is also controlled by the parameter  , which 

must be set correctly [Hay]. 
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 In the above algorithm, the future 1-day return is regressed on the entire set of past 1-day 

returns. However, for noisy financial data, this may result in too much “fitting to the noise”. It 

makes sense to modify the above algorithm to regress on only a small number of smoothed 

functions of the past data, rather than the entire set of past returns. Also we estimate the M-day 

returns rather than a sequence of M 1-day returns. This will then result in noise reduction and a 

better fit to the “true” signal. So instead of regressing on the past returns 
nu , we take a small set 

of “regressors” or technical indicators as the regression variables, which are functions of the 

past returns (and possibly other data). The indexes of the LP coefficients then run only over this 

small set of regressors, not over the entire set of past daily returns. The past covariance matrix is 

that of the regressors, and the future covariance matrix is the vector of covariances between the 

regressors and the future M-day return. The adaptive algorithm still runs in 1-day steps over the 

past daily data. Other than that, the problem is the same. The reduction in regression variables 

simplifies the estimation of the past and future covariance matrix. The problem of estimating the 

covariances is also simplified by using the Wavelet decomposition, since the parts of the 

technical indicators on different wavelet levels can be taken to be orthogonal. 

1.7 Statistical Tests – LP Filters & Indicators 

QuanTek has a variety of statistical tests and displays, designed to measure quantities of 

interest in Econometrics and Time Series Analysis.  The first two tests are designed to directly 

detect the presence of correlation between functions of the past returns, and the future returns. 

The first dialog box is the Indicators – Linear Prediction Filters dialog, on the Statistical 

Tests dialog (Correlation – LP Filter button), and the second is the Correlation Test – LP 

Filters & Indicators dialog. This second dialog is reached by clicking the Correlation button 

on the first dialog. To go back to the first dialog, click the Close button in the second dialog. 

These two dialogs work in tandem with each other. In the Indicators – Linear Prediction 

Filters dialog, you select one of six technical indicators, and then apply various degrees of 

smoothing and filtering to them. Then by going to the Correlation Test – LP Filters & 

Indicators dialog, you can measure the degree of correlation between these indicators and 

future returns. The method of measuring this correlation is described in Method of Correlation 

Tests (below). 
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Indicators – Linear Prediction Filters 

After selecting a stock data file and Adaptive filter in the Choose LP Filter dialog on 

the Statistical Tests dialog, you can display one of six technical indicators in the Indicators – 

Linear Prediction Filters dialog. The first three indicators are the raw output of the Adaptive 

filter, the raw output of the Standard LP filter, and the simple Long-Term Trend line. These 

indicators are not smoothed or filtered. The second three indicators are the Relative Price, 

Velocity (Returns), and Acceleration indicators. To these you can apply Wavelet Smoothing 

on various time scales, both Low-Pass and Band-Pass. There is a graph for viewing these 

indicators over the past 1024 days. The graph is in the form of a set of past values out to –400 

days plus future values, out to +100 days. This entire indicator consisting of past and future 

values can be recalculated for any day in the past and displayed in the graph. This is the purpose 

of the Indicator in the historical past spin control. Note that for the second three indicators, the 

future values are provided by the Standard LP filter, which is the standard Burg Order-

Regressive LP filter available commercially [NR]. After selecting the technical indicator and 

smoothing, you can click the Correlation button to call up the Correlation Test – LP Filters & 

Indicators dialog. This dialog then computes the correlation between the chosen indicator and 

future returns for the given security. In particular, choosing the Adaptive filter, you can 

measure the effectiveness of this filter directly in terms of the degree of correlation between its 

prediction and the actual future data.  

Correlation Test – LP Filters & Indicators 

After defining a technical indicator in the Indicators – Linear Prediction Filters dialog, 

you can click the Correlation button to call up the Correlation Test – LP Filters & Indicators 

dialog, which displays the correlation between the technical indicator and the future returns, 

as a function of the time lag.  How this works is described in the next section, Method of 

Correlation Tests. The indicator consists of a range of past and future values, corresponding to 

either the actual past returns with a future projection added on, or various types of smoothing and 

filtering of these. For each value, the correlation with the N-day return is measured, where N is 

the value set in the Time Horizon control. This yields a graph that, hopefully, displays a nice 

peak centered on the vertical line labeled ZERO (the present, no time lag). This graph may be 

moved left or right by means of the Lead Time control, to display different parts of the graph. 
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The correlation is measured over a set of past data whose length is set in the Correlation Scale 

list box. The correlation can also be measured at any past time using the Correlation in 

historical past spin control. This is extremely useful for seeing graphically how the correlation 

changes over time (non-stationarity). This is also a good way to gauge the persistence of the 

correlation, to determine whether the correlation is real or merely stochastic noise. (It is 

particularly interesting to compare the persistence of the correlation of the Adaptive filter 

output with future returns, versus the correlation of the simple Long-Term Trend line with 

future returns. Remember that the long-term investor is basically using the Long-Term Trend 

line as their Price Projection.) 

The Correlation Test – LP Filters & Indicators dialog box also computes some 

numerical quantities of interest.  First, the actual value of the correlation under the ZERO line is 

displayed.  The standard error is displayed, which depends on the number of data points.  The 

average N-day volatility for the stock data returns is displayed.  From these numbers, a 

theoretical estimate of the annual simple and compound gain is computed, using the formula: 

daily correlation times daily volatility times 256 for simple returns.  This gives you an idea of the 

theoretical gains possible with a given degree of correlation, given the volatility of the returns for 

that stock.  There is also a set of radio buttons to change the vertical scale of the graph.  

Method of Correlation Tests 

The correlation displays in the Correlation Test – LP Filters & Indicators test are of an 

unusual type.  They give the correlation as a function of the time lag of the indicator or filter 

output.  It is important to explain what this means.  Let us consider first the output of the Linear 

Prediction filter, and explain how the data in QuanTek is arranged.  The past logarithmic price 

data are labeled by an index which is 0 for the present day, or most recent day of daily data.  

Then the index becomes more positive going backward in time, and more negative going 

forward in time.  The index labeling the future Price Projection, on the other hand, is negative.  

The indexes for the past and future price data may be illustrated in the following diagram: 

 

… +6 +5 +4 +3 +2 +1 0 –1 –2 –3 … 
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The past data indexes are shown in black, while the future data indexes are shown in blue.  This 

is analogous to the Price Graph in QuanTek, where (with the white background) the past data are 

shown in black and the future projection is in blue. The returns are the changes in log price from 

one (close) log price to the next day’s (close) log price.  The returns are also labeled by the above 

indexes, with the index corresponding to the later day of the price difference.  (The return with 

index 0 is the log price for day 0 minus the log price for day +1.)  

Now, the Price Projection is supposed to be some (linear) function of the past returns 

data, which is supposed to be a prediction of the future returns data (and hence prices).  Any 

function of the past price data which is correlated with the future returns can constitute a valid 

Price Projection, so long as it makes use only of past data – no future data allowed!  Then, for 

an N-day time horizon, we wish to compute the correlation between the Price Projection and 

the N-day future returns, summed over days –1 through –N.  In order to do this, we need to use 

the formula for the sample covariance given in the Appendix, and divide the covariance by the 

variance to get the correlation.  (The correlation always ranges between –1 and +1.)  So we 

need to go back each day, so that each day in the past is “day 0”, the present day “relative” to 

this past day, and compute a separate Price Projection using only data to the past of (and 

including) this previous “day 0”.  If (n) denotes the n’th day in the past, (with n a positive 

number or zero) then “day 0” relative to this n’th day in the past will be denoted by 0(n).  

Similarly, the day with index k relative to this n’th day in the past will be denoted by k(n).  So 

the indexes in the above table should be denoted by k(0).  We may similarly extend the table 

going back, say, 1024 days in the past, as follows: 

 

… +4(0) +3(0) +2(0) +1(0) 0(0) –1(0) –2(0) –3(0) … 

… +4(1) +3(1) +2(1) +1(1) 0(1) –1(1) –2(1) –3(1) … 

… +4(2) +3(2) +2(2) +1(2) 0(2) –1(2) –2(2) –3(2) … 

… +4(3) +3(3) +2(3) +1(3) 0(3) –1(3) –2(3) –3(3) … 

… … … … … … … … … … 

 

So, since QuanTek typically uses 2048 days of data (8 years), and the Price Projection uses 1024 

days of data, we can go back 1024 days and compute a Price Projection for each of the 1024 days 

in the past, each using the previous 1024 days of data.  So the table above will have 1024 rows.  
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It will have 1024 columns of past data (black), and since the Price Projection is computed 100 

days into the future, it will have 100 columns of future Price Projection (blue).  As a reminder, in 

the above table, day 0(0) is actually day 0, day 0(1) is actually day +1, day 0(2) is actually day 

+2, day 0(3) is actually day +3, and so forth, going back 1024 days in the past.  Each Price 

Projection relative to n days in the past is computed using only past data relative to n days in the 

past.  In the Correlation Test, when you compute the Price Projection 1024 times, what you 

are doing is filling in the blue areas of this table using data relative to n days in the past, for n 

ranging from 0 to 1023. 

Now the sample correlation can be computed between the Price Projection and the 

future returns.  To start, suppose we want to compute the covariance between the 1-day Price 

Projection (of the returns) and the actual 1-day future returns.  This sample covariance will be 

the sum over the past 1024 days, of the product of the projected 1-day return with the actual 1-

day return.  We don’t know the future 1-day return relative to day 0(0), because it hasn’t 

happened yet.  But relative to 1 day in the past, the 1-day future return relative to day 0(1) is the 

return 0(0).  Similarly, the 1-day future return relative to day 0(2) is the return 0(1), and that 

relative to day 0(3) is the return 0(2).  The projected return relative to day 0(1) is the projection –

1(1), that relative to day 0(2) is the projection –1(2), and that relative to day 0(3) is the projection 

–1(3).  So the sample covariance is the sum of the products of these 1-day projected returns with 

the corresponding actual returns, going back 1024 days in the past.  Similarly, we can also 

compute the covariance with an N-day time horizon, by taking the sum of the first N days of the 

Price Projection, and computing the covariance with the corresponding N-day average of the 

future returns.  Finally, the covariance is divided by the standard deviations to get the 

correlation. (This is the ordinary, Pearson’s R definition of correlation.  The two robust 

methods of calculating correlation can be calculated using the same data arrangement.) 

However, this method is even more general than described so far.  We may not be sure 

whether the phase of the Price Projection is correct.  Also, we may want to compute the 

correlation between past returns and future returns.  So instead of just computing the correlation 

between the 1-day Price Projection and 1-day future returns, we can compute the correlation 

between any day’s past data or future projection, and the 1-day future returns.  In other words, 

instead of just taking a sum of products of the projection with index –1(n) with the returns with 

index 0(n –1), we take a sum of products of the data for any k(n) with the returns with index 0(n 
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–1), summed over all n from 1 to 1023.  The difference between the index k and the value –1 we 

denote as the lead time.  A separate correlation is computed for a range of lead times, and this 

correlation as a function of lead time is displayed as a graph.  The correlation corresponding to 

zero lead time appears under the vertical line marked ZERO on the graph.  The graph can then be 

shifted back and forth, so that different lead times appear under the vertical line, using the Lead 

Time control.  In this way, the entire 100 days’ worth of filter output of the Price Projection can 

be tested for correlation with the 1-day future return, as can all the past returns (back to +1024 

days or so).  By taking N-day sums as described previously, the correlation can also be measured 

for an N-day time horizon, for any desired lead time.  Each choice of lead time really amounts 

to a separate technical indicator, so in this way a tremendous number of distinct indicators can 

be tested all at once.  In fact, some surprising correlations between the past N-day returns, for 

various time lags, and the future N-day returns, can be uncovered in this way using the 

Correlation Test – LP Filters & Indicators test.  In this way, a large number of possible 

technical indicators can be tested, one for each possible setting of the Lead Time control, not 

only the one indicator (the Price Projection itself) corresponding to a Lead Time of zero. 

1.8 Statistical Tests – Wavelet Routines 

 Two of the statistical tests on the Statistical Tests dialog are designed to test the correct 

operation of the Wavelet routines. These are the Wavelet Analysis dialog and the Wavelet 

Variance dialog. The Wavelet Analysis dialog displays the properties of the wavelet 

coefficients and smoothing, while the related Wavelet Variance dialog displays properties of the 

wavelet variance. Both of these dialogs display the properties for both the Discrete Wavelet 

Transform (DWT) and the Maximal-Overlap Discrete Wavelet Transform (MODWT) types 

of wavelet transforms. The properties are displayed graphically using data from any security in 

the portfolio. Both of these tests are diagnostic tests for the Wavelet routines, and do not pertain 

directly to trading in the portfolio. For more information on the wavelet routines, see the book by 

Donald B. Percival & Andrew T. Walden, Wavelet Methods for Time Series Analysis [PW], 

from which the QuanTek wavelet routines were adapted. 

 Wavelet Analysis 

 The main purpose of the Wavelet Analysis dialog is to test the wavelet routines and view 

the properties of the wavelet coefficients and wavelet variance. After choosing a security, you 
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can view either the wavelet coefficients or the wavelet variances, each using either the DWT or 

MODWT type of wavelet transform. You can view each wavelet level separately, or the sum of 

all levels. There is also a switch between a display of the multi-resolution analysis (MRA) and 

the shifted wavelet coefficients. The MRA is a decomposition of the data into spectral octaves, 

while the shifted wavelet coefficients are the wavelet transform of the data, shifted in time to 

correspond to the original data. When the display type is coefficients, and viewing the sum of all 

levels, the display should be identical to the returns themselves, using either the DWT or 

MODWT filters. This is an important test of the filters. You can toggle the display to compare 

the coefficients display with the raw returns, or the variance display with the variance of the 

raw returns. Also, you can toggle the display between the data from the chosen security, and a 

set of random data that is generated each time it is toggled. In this way you can study how the 

display changes with the changes in the random data set. 

When viewing the variance displays on any of the wavelet levels, there should be a close 

correspondence between the displays for the DWT or MODWT type of wavelet transform. 

There should also be a close correspondence between the variance from the MRA and that from 

the shifted wavelet coefficients. But these displays will not be exactly the same. Also, on any 

setting of the wavelet level, you can view different settings of the Wavelet Smoothing. Once 

again, the wavelet smoothing should be similar, but not identical, between DWT and MODWT, 

and between the MRA and the shifted wavelet coefficients. If these conditions are fulfilled, it 

means that both types of wavelet transform are working correctly. 

Finally, for any setting of the Wavelet Level, and the Variance Smoothing set on Level 

Average, you can view the level average variance on each level, or the sum of all levels. On the 

DWT setting, this level average variance should be the same between the MRA and the shifted 

wavelet coefficients, and the sum of all the level variances should be 100%. But on the 

MODWT setting, these will be different, and will not add up to 100%. (The level average 

wavelet variance is not conserved by the MODWT.) You can also compare these levels with the 

raw returns variance, which is always 100% on each level setting.  

 Wavelet Variance 

 The main purpose of the Wavelet Variance dialog is to investigate properties of the 

covariance matrix derived from the wavelet variance. The Wavelet Variance or Covariance 
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Matrix is displayed on a graph using either the DWT or the MODWT type of wavelet filter. 

You can view the Wavelet Variance with a variety of time scales of Smoothing, listed in days. 

Also there is a control to adjust the Shrinkage, which is a mixture of the Wavelet Variance and 

its level average, for the purpose of smoothing. These might be used in a type of LP filter which 

estimates the covariance directly from the wavelet variance (not used at present). 

 When viewing the Covariance Matrix, this is estimated by taking a “signal” which is 

unity at time zero and zero otherwise, and taking its MRA, using either the DWT or the 

MODWT type of wavelet filter. Then the MRA on each level is multiplied by the wavelet 

variance of the data from the chosen security, using the Smoothing and Shrinkage settings, at 

any given time index. You can choose any specific Wavelet Level, or the sum of all levels, so 

you can view each wavelet level of the MRA of the signal individually. Finally the inverse 

wavelet transform is taken and the result displayed on a graph. This inverse transform is 

interpreted as the covariance distribution due to the wavelet variance of the security. There is a 

control to adjust the vertical scale of the graph. There is another control to move the signal to 

different time indexes, to observe how the covariance changes with the time index. Finally, as a 

check, you can select a Level Wavelet Variance, meaning the case where the wavelet variance 

is constant and the same on all levels. This should lead to no covariance, so the signal appears as 

a single sharp line with a height of 100%. (This may be hard to see until you move it away from 

the ZERO line using the Relative Time Lag control.) 

 The theory behind this is that if the wavelet variance of the security is constant and the 

same on all levels, this is equivalent to white noise and there is no correlation. However, if the 

variance varies on different wavelet levels, then this indicates the presence of correlation and 

leads to a covariance between elements of the time series at different time indexes. If the wavelet 

variance on different levels changes with the time index, this leads to a time-dependent 

covariance matrix. The variance on each wavelet level contributes a term to the covariance 

matrix, which can be viewed on the graph. If the wavelet variance is equal on all levels, all these 

terms add up to a single sharp line, otherwise the distribution is spread out and there is non-zero 

covariance between different time indexes. So this dialog provides an interesting display of the 

interplay between the time-dependent level wavelet variance of the returns series and the non-

zero covariance that results from it. 
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 It might be added that the variance computed from the Wavelet transform, just like the 

Fourier transform, is mostly stochastic noise. To get an estimate of the “true” variance requires 

some kind of smoothing procedure. For this same reason, an estimate of the covariance matrix 

directly from the wavelet variance results in a covariance matrix that is mostly stochastic noise. 

The Smoothing and Shrinkage can help, but in general this method is unreliable due to the 

stochastic nature of the measured wavelet variance. So this method of computing the covariance 

matrix for use in an LP filter was not successful – a better procedure is the use of an Adaptive 

filter. 

1.9 Statistical Tests – Spectrum of Returns 

 Two of the statistical tests in QuanTek are displays of the spectrum of the returns. These 

two tests are based on the Fourier Transform and the Wavelet Transform of the returns data. 

The graph of the power spectrum based on the Fourier Transform is a standard test in Time 

Series Analysis called the Periodogram. Due to the Wiener-Khinchin Theorem, the 

Periodogram is the Fourier Transform of the autocovariance function.  This means that if the 

original time series is completely random “white noise”, then the smoothed Periodogram should 

be constant.  Similarly, the graph of the power spectrum based on the Wavelet Transform is the 

Wavelet Transform of the autocovariance function. Any deviation from a constant spectrum is an 

indicator of correlation in the time series.  This is the main purpose of studying the spectrum of 

the time series – to detect possible correlation.   

Spectrum Periodogram 

The Periodogram is a method for measuring the spectrum of a time series, in this case 

returns data.  A description of this test can be found in many standard textbooks, such as 

Brockwell & Davis [B&D].  The Periodogram is basically a Fast Fourier transform (FFT) of 

the stock returns data (squared), and displays the squared amplitude of each frequency 

component, in steps of the lowest frequency, up to the Nyquist frequency (with period 2 days). 

The amplitude of each sine wave of a given frequency is squared to give the spectral power at 

that frequency, and the result is displayed as a graph of power versus frequency, to make the 

Periodogram.  It should be noted that only the bottom half of the spectrum is displayed, 

corresponding to 512 values of the power spectrum out of the 1024 total.  This is because we feel 

that the upper half of the spectrum is not very significant, since it corresponds to cycles with 
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periods between 2 and 4 days, and with daily data these are probably just stochastic noise.  In 

fact, filtering out just this narrow range of frequencies eliminates half of the noise power 

spectrum, so we feel this is a worthwhile noise reduction strategy. 

For comparison, a second method of spectrum estimation, called the Maximum Entropy 

method [NR], is also displayed.  This method relies on the Standard Linear Prediction filter.  

The LP filter coefficients are computed from the returns data by means of the Burg Order-

Recursive algorithm, then the Maximum Entropy method estimates the spectrum from these 

coefficients.  It can be seen that the results are pretty similar in both cases. 

According to the standard theory of the Periodogram, it must be smoothed on some 

time scale.  If it is left unsmoothed, the standard error of each Fourier component is roughly 

100% of the amplitude of the component.  After smoothing on a time scale of N days, the 

standard error of the smoothed Fourier component is roughly 1 N .  The default smoothing is 

set at 6 days, but you can change to a wide range of smoothing time intervals and view the 

resulting smoothed Periodogram.  Please consult a standard text on Time Series Analysis for 

an explanation of the necessity for smoothing the Periodogram, such as Brockwell & Davis 

[B&D]. 

There are many peaks and valleys in the observed spectrum, but unfortunately it is not 

possible to show conclusively that these are any different from a random result.  To demonstrate 

this, the Periodogram can be viewed using only random Gaussian data, generated by a 

random-number generator.  To view the random data, click the Random button.  Each time you 

toggle this button, a new set of random data is generated, and displayed in the two windows.  So 

you can repeatedly compare the returns data Periodogram with that of the random Gaussian 

data, with a new set of random data each time.  It can be seen that the Periodogram with random 

Gaussian data also displays the same type of peaks and valleys, so it can be concluded that, 

whatever correlations are present in the returns data, they are usually buried in stochastic noise. 

Also included in this dialog box are two standard statistical tests.  The Kolmogorov-

Smirnov test [NR] compares the spectral distribution of the Periodogram to a constant 

distribution.  It then computes the confidence level that the spectrum is different from a constant 

distribution.  This can be interpreted as the probability that the spectrum was not obtained from a 

random Gaussian distribution by random chance alone.  It will be observed that, using the 

random Gaussian data, this confidence level ranges from 0% to 100%, and is distributed roughly 
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equally over this range.  This is what you would expect from a purely random result.  The 

Fisher’s test [B&D] computes the confidence level for a periodic component in the spectrum.  

This is used to determine the probability that an observed cycle in the data is not obtained from a 

random Gaussian distribution by random chance alone.  It will likewise be seen that, using the 

random Gaussian data, this confidence level also ranges from 0% to 100%, and is also 

distributed roughly equally over this range.  It would be interesting to run these two tests over a 

collection of security data files, and observe whether or not the distribution of the confidence 

levels of the two tests is still constant from 0% to 100%. 

Spectrum Wavelet 

This dialog box uses an alternative method of measuring the spectrum based on the 

Discrete Wavelet Transform (DWT).  Unlike the Fourier basis, which are “infinite” sine 

waves, but have a single, precise frequency, the wavelets are waves that are localized in both 

time and frequency, but not infinitely sharp in either.  When decomposed in the wavelet basis, 

the wavelet coefficients of the stock returns, which are the amplitudes of each wavelet basis 

component making up the waveform of the returns, are functions of both frequency and time.  

More precisely, the frequency spectrum is divided up into octaves, which are multiples of two in 

frequency.  So the lower end of the spectrum has more divisions into octaves than the higher end.  

This is appropriate, since we are mainly interested in the low frequency end of the spectrum 

anyway, as this is what determines the long-term trend of the prices.  To compute the wavelet 

spectrum, therefore, the returns time series is decomposed into its wavelet coefficients, and then 

these are squared to give the power spectrum.  Finally, this power spectrum is averaged over 

time within each frequency octave.  The result is displayed in a graph, which shows the power 

spectrum in each octave.  There are only 9 octaves in all, as opposed to 1024 frequency 

components in the case of the Periodogram.  This may be viewed as an alternative method of 

smoothing the Periodogram, and thereby (hopefully) eliminating some of the stochastic noise. 

When you first open the Spectrum Wavelet dialog, the yellow bars you see are the one-

standard error bars for each octave.  Notice that the error bars are much larger for the low 

frequency octaves, because there are correspondingly fewer data points in these octaves.  When 

you select a stock, the wavelet spectrum is displayed.  The top graph shows this spectrum, 

averaged over all 2048 days of data, whereas the bottom graph shows a different type of wavelet 
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spectrum called the Maximal-Overlap Discrete Wavelet Transform (MODWT), which is 

time averaged over only the latest N days.  You can set this number of days N to any value from 

1 to 2048.  This shows how the MODWT spectrum changes as the time period over which it is 

averaged changes. 

The Spectrum Wavelet dialog contains two versions of the Chi-Square test.  The first 

test measures the confidence level that the time-averaged wavelet spectrum is not random.  

This test usually gives a result that the spectrum is close to random, since there are only 9 “bins”.  

On the other hand, the second Chi-Square test measures the confidence level that the full 

wavelet spectrum is not random.  This test is also expressed in terms of standard deviations 

away from the center of the (Gaussian) probability distribution, which is another way of 

expressing the confidence level.  This almost always gives an amazing number of standard 

deviations away from randomness for the full wavelet spectrum.  So either there is some 

correlation that is being averaged over in the time average after all, or else this result may be 

explained by the fact that the returns themselves do not obey a Gaussian distribution, but instead 

have “fat tails”.  We are still investigating this question, but it is a very interesting result 

nonetheless. 

1.10 Statistical Tests – Correlation of Returns 

 QuanTek includes two tests for correlation of returns, between the returns of the same 

security (autocorrelation) or between the returns of different securities. The Correlation – 

Returns dialog displays a scatter graph of the returns between any two securities in the 

portfolio. Often the returns of different securities are strongly correlated, and this information 

can be useful in choosing securities for a diversified portfolio. (Generally, to achieve maximum 

diversification, you want to find securities that are anti-correlated with each other, so that when 

one goes down, the other is likely to go up.) The Correlation – Auto & Cross dialog displays 

the correlation between the two securities as a function of time lag. If the two securities are the 

same, then it displays the autocorrelation sequence. 

Correlation – Returns 

An interesting statistical display in QuanTek is the Correlation – Returns dialog, which 

is a scatter graph of the returns of two different securities.  This is intended to display, 

graphically, the correlation or anti-correlation of the returns of the two securities.  If the 
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returns are correlated, then the dots of the scatter graph will tend to line up along the diagonal 

line of the graph, while if they are anti-correlated, they will tend to line up along the opposite 

diagonal.  If the returns are uncorrelated, the display is designed so that the dots should be evenly 

distributed over the whole square area of the display (assuming a double exponential distribution 

of the returns).  Connected with this display is a measure of the correlation, using three different 

methods.  First there is the ordinary Pearson’s R method of measuring correlation, which 

measures linear correlation [NR].  But there are also two different nonparametric or rank-

order correlation methods, which are also called robust methods of measuring the correlation.  

These are the Spearman Rank-Order Correlation and Kendall’s Tau [NR].  These robust 

methods do not depend on the random variables belonging to a Gaussian distribution (which they 

really do not – the distribution has “fat tails”), and hence they are less likely to indicate spurious 

correlation where no correlation really exists. 

This Correlation – Returns dialog shows some rather strong correlations for certain 

pairs of stocks, especially those in the same sector of the economy.  This correlation is useful to 

know from the standpoint of reducing risk in an optimal portfolio.  If some of the securities in 

the portfolio are strongly correlated, then this increases the market risk because if one security 

loses value, all the securities that are correlated with it also tend to lose value.  To reduce risk to 

a minimum, it is desirable to choose securities that are uncorrelated, or even anti-correlated, so 

that fluctuations in the value of one security will be hedged or compensated by fluctuations in the 

other securities in the portfolio.  

Correlation – Auto & Cross 

If you click the Correlation button in the Correlation – Returns dialog, the 

Correlation – Auto & Cross dialog box is displayed, which contains a set of bar graphs of the 

correlation between the two securities, as a function of time lag.  The time lag is just the time 

difference, in days, between the returns that are compared in the correlation test.  One graph for 

positive time lags and one graph for negative time lags are displayed.  If you choose the same 

security for both, then you can view the autocorrelation of the returns of that security.  In that 

case, the two bar graphs for positive and negative lags will be the same.  If you change the time 

horizon for the correlation to N days, then the correlation between N-day returns is computed.  

In this case, the bars of the bar graphs become N pixels wide rather than just one pixel wide. 
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This Correlation – Auto & Cross dialog is useful for comparing the degree of 

correlation between different securities for the purpose of portfolio selection.  It is also useful for 

general studies of the correlation structure of the stock returns data.  For example, when studying 

the autocorrelation of daily returns, if you look closely you can see that the autocorrelation for 

the first three days of lag is almost always negative.  Often you can also spot what look like 

cycles in the correlation structure, with periods in the intermediate-term range of, say, one to 

several months. 

1.11 Statistical Tests in the Graph Window 

 In addition to the statistical tests in the Statistical Tests dialog, there are also several 

tests available directly in the Graph Window for a security. These make use of the historical 

data and Adaptive filter calculations for that security. The most important test is the Price 

Projection itself, as calculated by the Adaptive filter and displayed on the graph. Another test is 

the actual Historical Error Bars, which measure the actual difference between the historical 

Price Projection and the actual “future” prices. This is a measure of the actual accuracy of the 

Price Projection, which in turn is a measure of the correlation between the projected future 

returns and the actual future returns.  

Historical Price Projection 

 When new data are downloaded, and the Graph Window is opened, you are asked if you 

want to update the Adaptive filter calculation. If so, then a new calculation is begun starting 

2048 days in the past, in which time the Adaptive filter will “adapt” to the data and then display 

the result as a straight-line Price Projection. If not, then a quick calculation using the Standard 

LP filter is displayed instead. (This display is not in the form of a straight line.) If the Adaptive 

filter is up-to-date, you can then toggle the Toggle Adaptive Filters toolbar button to switch 

back and forth between the two filters, for comparison. You can also select an alternative LP 

filter using the Select LP Filter button, and calculate this alternative filter. Then the Toggle 

Adaptive Filters toolbar button toggles between the default Adaptive filter and the alternate 

Adaptive filter. 

 If you click the Historical Price Projection button, then you can select a date in the past 

using the Calendar Control, and the Graph will be displayed as it was on that day, including the 

Price Projection for that day. You can then compare the Price Projection for that day with the 
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actual “future” prices. You can also use the Toggle Adaptive Filters toolbar button to toggle 

back and forth between the default Adaptive filter and either the Standard LP filter or the 

alternate Adaptive filter, for that day, as previously described. So by using the Historical Price 

Projection, you can see directly how the Price Projection due to the default Adaptive filter 

compares with the other filters and with the actual “future” prices. (To see the actual “future” 

prices, you need to select another date in the Date Calendar.) 

Historical Error Bars 

 The error bars on the future Price Projection that are displayed when the Graph 

Window first opens are only an estimate. They are computed by measuring the average 

volatility, or high (log) price minus the low (log) price, and then extrapolating this into the future 

n days by multiplying it by 1n , where n is the index of the future day. So, for example, for 

the first future day with 1n  , the average volatility is multiplied by 2  and displayed as an 

error bar. This is just an estimate based on the properties of the Random Walk model. The error 

bars are centered on the future Price Projection. 

 You can compute the actual historical error bars, using the Projected Error Bars toolbar 

button. This goes back 1024 days (for a data set of 2048 days) and measures the difference 

between the actual historical price and the Price Projection, for each past day, going forward 

128 days in the future. The default Adaptive filter is used for the Price Projection. The errors 

above the actual price and below the actual price are counted separately, for each of the 128 

future days. Then the average is taken over the past data set and displayed as a set of actual error 

bars, one for each of the 128 future days. This can then be compared with the estimated error by 

toggling the Projected Error Bars toolbar button. This is another direct test of how well the 

Adaptive Filter is working. The narrower the actual error bars, the better the Adaptive filter is 

tracking the actual future price action. Also if there is any systematic error in the Adaptive filter, 

the upper and lower error bars will be different lengths, which will be immediately visible in the 

display. So this is another good test of the effectiveness of the Price Projection from the 

Adaptive filter. 
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Simulated Trading 

 This test is planned for a future (hopefully near future) version of QuanTek. An older 

version incorporated a simulated trading test for a single security, using Trading Rules for that 

security alone. However, a much more pertinent test would be simulated trading for the entire 

portfolio. Starting with an updated Adaptive filter calculation for each security, which saves the 

expected return for the entire history of the security (up to 8 years), what would be required 

would be to step forward one day at a time and perform the Optimal Portfolio calculation each 

day, compute the Buy/Sell signals for that day, then record the trades for the entire historical 

time period. This would then provide an explicit example of maximizing returns while 

minimizing risk for the portfolio as a whole. (The main question is how much computer power 

and memory it would require.) 

1.12 Appendix:  Definition of Correlation 

The standard definition of linear correlation of two random variables, called Pearson’s 

R, is given by [NR]: 
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Here, x  and y  are the mean values of the two random variables.  There are two other types of 

correlation, which are called robust correlations, which are the Spearman Rank-Order and 

Kendall’s Tau [NR].  These are called nonparametric methods of computing correlation 

because, unlike the linear or Pearson’s R correlation, they do not presuppose a Gaussian 

distribution of the random variables.  The Spearman Rank-Order correlation is the linear 

correlation of the ranks, as opposed to the linear correlation of the values of the variables as in 

linear correlation.  To compute the ranks, the values are arranged in increasing order, and the 

order of each value is its rank.  Kendall’s Tau uses the correlation of the numerical order of the 

ranks (greater than, less than, or the same), as opposed to the difference in value of the ranks as 

in Spearman Rank-Order.  These two robust methods are more reliable when the distribution of 

the random variables is non-Gaussian, and in particular when the distribution has “fat tails” as is 

the case with most financial data. 
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However, for our purposes a modified definition of correlation is more suitable.  The 

problem with the above definition is that it breaks down when the buy-and-hold strategy is 

considered.  To be specific, one of the above random variables will represent the future returns, 

and the other will represent the trading rules, or amount to be invested in a short-term trading 

strategy.  If s is the number of shares, and p  is the actual (not logarithmic) returns (change in 

price per share), then the expected (simple) gain g, in dollars, is given by (summed over the 

trading days in a given time interval): 
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For y in the correlation formula we may use the logarithmic returns as a conservative estimate for 

the actual returns: 
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The amount invested, in dollars, at time i is given by: 

     #shares price per share dollar amount investedd s p      

Thus we have: 
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For the annualized simple gain we sum over the number of trading days in a year, assuming we 

are dealing with daily returns, which may be taken to be 256 days. 

The trading rules variable x is defined as the dollar amount invested at any given time, 

relative to the average amount of equity invested over the time period.  This average equity can 

be either long or short, so the average equity invested is given by the average absolute value of 

the dollar amount invested over the time interval: 

"trading rules" variablei
i
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d
x

d
   
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Here we define the average absolute value of the dollar amount invested over the time interval 

by: 

1
average absolute value of equity investedi i

i

d d
N

   

The average absolute value of the equity invested, as a percentage of the total equity available to 

invest, is called the average margin leverage.  To compare measured correlations to measured 

returns from trading rules, we normalize the average margin leverage to 100%.  In other words, 

the normalized gain, denoted g , will be given by the annualized simple gain divided by the 

average absolute value of the dollar amount invested. 

However, the correlation is expressed in terms of the root mean square of the trading 

rules, not the average absolute value of the trading rules (which is defined to be unity).  We need 

to convert between one and the other.  This is straightforward if we assume the random variables 

are distributed according to a Gaussian distribution.  Denoting a Gaussian random variable by z, 

with standard deviation , it is well known that the Gaussian distribution (assuming N  ) is 

normalized as follows: 
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The r.m.s. value of z is then given as the square root of the mean value of 2z , which (the latter) 

is defined to be the variance: 
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The average absolute value of z, on the other hand, is given as follows: 
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Thus we have the following general relationship between the average absolute value of a 

Gaussian variable and its standard deviation (root mean square value): 
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Thus when any quantity is normalized to unit average absolute deviation (dividing by the 

average absolute deviation), it will be about 25% greater than when it is normalized to unit 

standard deviation (dividing by the standard deviation). 

Thus the annualized gain, normalized to unit margin (average absolute amount of dollars 

invested) will be given by: 
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This may be rewritten using the definition of the gain given above (renormalizing di in numerator 

and denominator by dividing by the average absolute deviation): 
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We may now use the inequality given above to rewrite this in terms of the logarithmic returns yi: 
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Taking into account that there are 256 trading days in a year, we find: 

2 2

2 2
2 2

1.2533 1.2533 256
1 1

256 256

i i i i
i i

i i
i i

i i i i
i i

x y x y
g y y

x y
x y

   
  

 

Let us denote the average volatility, by which we mean the r.m.s. value of the logarithmic 

returns, by : 

2 root mean square logarithmic volatilityiy    

We may then define our modified correlation, as follows: 
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In other words, the modified correlation is the regular correlation with the mean values of the 

variables not subtracted off.   

The annualized gain, normalized to unit margin, is the expected dollar gain divided by the 

average absolute amount of dollars invested.  It is thus given in terms of the quantities defined 

above by: 
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Thus the expected annualized simple gain, normalized to unit margin (unit average absolute 

amount of equity invested) is approximately given by the modified correlation multiplied by the 

average (r.m.s.) daily volatility of returns, times the number of trading days in a year and a 

numerical factor. 

Thus we see that the meaningful quantity for the estimation of trading returns is this 

modified correlation, computed as if the mean values of the variables were zero, rather than the 

standard definition of correlation.  In the ideal case of daily returns that are constant, the trading 

rules would be simply a constant amount invested, and then the modified correlation between the 

trading rules and the returns would be 100%.  On the other hand, according to the usual 

definition of correlation, the correlation would be indeterminate because the variance of both the 

trading rules and returns would be zero; both of these would be equal to their mean values, so 

there would be zero in both the numerator and denominator.  If, as often happens, the trading 

rules are nearly constant, then there would be very small quantities in both the numerator and 

denominator, and the computed correlation would be dependent on minute variations in the 

trading rules, which has very little to do with actual investment gains or losses.  The modified 

correlation, on the other hand, would register the gain or loss to be incurred from the nearly 

constant investment, so it is the appropriate measure of correlation to be employed here. 

The usual routines for measuring correlation [NR] use the data with the means subtracted 

off, so these routines must be modified to eliminate this subtraction of the means, resulting in the 

formula for the modified correlation given above.  The theoretical return is then computed as 

above, multiplying this modified correlation by the r.m.s. (logarithmic) volatility, times the 

number of trading days in a year and a numerical factor, which results in a number which is 

approximately the actual gain, for small values of the daily returns, and is always less than or 

equal to the actual gain (so it is a conservative estimate).   
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